Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(7): 1172-1177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372634

RESUMO

The activation of the CP/LP C3 proconvertase complex is a key event in complement activation and involves cleavage of C4 and C2 by the C1s protease (classical pathway) or the mannose-binding lectin-associated serine protease (MASP)-2 (lectin pathway). Efficient cleavage of C4 by C1s and MASP-2 involves exosites on the complement control protein and serine protease (SP) domains of the proteases. The complement control protein domain exosite is not involved in cleavage of C2 by the proteases, but the role of an anion-binding exosite (ABE) on the SP domains of the proteases has (to our knowledge) never been investigated. In this study, we have shown that the ABE on the SP of both C1s and MASP-2 is crucial for efficient cleavage of C2, with mutant forms of the proteases greatly impaired in their rate of cleavage of C2. We have additionally shown that the site of binding for the ABE of the proteases is very likely to be located on the von Willebrand factor domain of C2, with the precise area differing between the enzymes: whereas C1s requires two anionic clusters on the von Willebrand factor domain to enact efficient cleavage of C2, MASP-2 apparently only requires one. These data provide (to our knowledge) new information about the molecular determinants for efficient activation of C2 by C1s and MASP-2. The enhanced view of the molecular events underlying the early stages of complement activation provides further possible intervention points for control of this activation that is involved in a number of inflammatory diseases.


Assuntos
Ativação do Complemento , Lectina de Ligação a Manose , Serina Proteases Associadas a Proteína de Ligação a Manose , Complemento C1s , Complemento C4/metabolismo , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Domínios Proteicos , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Fator de von Willebrand , Humanos , Células HEK293
2.
Nat Commun ; 14(1): 1163, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859523

RESUMO

Autotransporters (ATs) are a large family of bacterial secreted and outer membrane proteins that encompass a wide range of enzymatic activities frequently associated with pathogenic phenotypes. We present the structural and functional characterisation of a subtilase autotransporter, Ssp, from the opportunistic pathogen Serratia marcescens. Although the structures of subtilases have been well documented, this subtilisin-like protein is associated with a 248 residue ß-helix and itself includes three finger-like protrusions around its active site involved in substrate interactions. We further reveal that the activity of the subtilase AT is required for entry into epithelial cells as well as causing cellular toxicity. The Ssp structure not only provides details about the subtilase ATs, but also reveals a common framework and function to more distantly related ATs. As such these findings also represent a significant step forward toward understanding the molecular mechanisms underlying the functional divergence in the large AT superfamily.


Assuntos
Antineoplásicos , Subtilisina , Sistemas de Secreção Tipo V , Transporte Biológico
3.
Antioxidants (Basel) ; 12(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36829940

RESUMO

The formation of disulphide bonds is an essential step in the folding of many proteins that enter the secretory pathway; therefore, it is not surprising that eukaryotic and prokaryotic organisms have dedicated enzymatic systems to catalyse this process. In bacteria, one such enzyme is disulphide bond-forming protein A (DsbA), a thioredoxin-like thiol oxidase that catalyses the oxidative folding of proteins required for virulence and fitness. A large body of work on DsbA proteins, particularly Escherichia coli DsbA (EcDsbA), has demonstrated the key role that the Cys30-XX-Cys33 catalytic motif and its unique redox properties play in the thiol oxidase activity of this enzyme. Using mutational and functional analyses, here we identify that a set of charged residues, which form an acidic groove on the non-catalytic face of the enzyme, further modulate the activity of EcDsbA. Our high-resolution structures indicate that these residues form a water-mediated proton wire that can transfer protons from the bulk solvent to the active site. Our results support the view that proton shuffling may facilitate the stabilisation of the buried Cys33 thiolate formed during the redox reaction and promote the correct direction of the EcDsbA-substrate thiol-disulphide exchange. Comparison with other proteins of the same class and proteins of the thioredoxin-superfamily in general suggest that a proton relay system appears to be a conserved catalytic feature among this widespread superfamily of proteins. Furthermore, this study also indicates that the acidic groove of DsbA could be a promising allosteric site to develop novel DsbA inhibitors as antibacterial therapeutics.

4.
Front Immunol ; 13: 921272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860281

RESUMO

Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo V , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Filogenia , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo , Virulência
5.
NPJ Biofilms Microbiomes ; 8(1): 20, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396507

RESUMO

The formation of aggregates and biofilms enhances bacterial colonisation and infection progression by affording protection from antibiotics and host immune factors. Despite these advantages there is a trade-off, whereby bacterial dissemination is reduced. As such, biofilm development needs to be controlled to suit adaptation to different environments. Here we investigate members from one of largest groups of bacterial adhesins, the autotransporters, for their critical role in the assembly of bacterial aggregates and biofilms. We describe the structural and functional characterisation of autotransporter Ag43 variants from different Escherichia coli pathotypes. We show that specific interactions between amino acids on the contacting interfaces of adjacent Ag43 proteins drives a common mode of trans-association that leads to cell clumping. Furthermore, subtle variation of these interactions alters aggregation kinetics and the degree of compacting within cell clusters. Together, our structure-function investigation reveals an underlying molecular basis for variations in the density of bacterial communities.


Assuntos
Adesinas de Escherichia coli , Proteínas de Escherichia coli , Adesinas de Escherichia coli/química , Aderência Bacteriana , Biofilmes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
6.
Comput Struct Biotechnol J ; 19: 4725-4737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504665

RESUMO

The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.

7.
Antioxid Redox Signal ; 35(1): 21-39, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607928

RESUMO

Aims: Thioredoxin (TRX)-fold proteins are ubiquitous in nature. This redox scaffold has evolved to enable a variety of functions, including redox regulation, protein folding, and oxidative stress defense. In bacteria, the TRX-like disulfide bond (Dsb) family mediates the oxidative folding of multiple proteins required for fitness and pathogenic potential. Conventionally, Dsb proteins have specific redox functions with monomeric and dimeric Dsbs exclusively catalyzing thiol oxidation and disulfide isomerization, respectively. This contrasts with the eukaryotic disulfide forming machinery where the modular TRX protein disulfide isomerase (PDI) mediates thiol oxidation and disulfide reshuffling. In this study, we identified and structurally and biochemically characterized a novel Dsb-like protein from Salmonella enterica termed bovine colonization factor protein H (BcfH) and defined its role in virulence. Results: In the conserved bovine colonization factor (bcf) fimbrial operon, the Dsb-like enzyme BcfH forms a trimeric structure, exceptionally uncommon among the large and evolutionary conserved TRX superfamily. This protein also displays very unusual catalytic redox centers, including an unwound α-helix holding the redox active site and a trans-proline instead of the conserved cis-proline active site loop. Remarkably, BcfH displays both thiol oxidase and disulfide isomerase activities contributing to Salmonella fimbrial biogenesis. Innovation and Conclusion: Typically, oligomerization of bacterial Dsb proteins modulates their redox function, with monomeric and dimeric Dsbs mediating thiol oxidation and disulfide isomerization, respectively. This study demonstrates a further structural and functional malleability in the TRX-fold protein family. BcfH trimeric architecture and unconventional catalytic sites permit multiple redox functions emulating in bacteria the eukaryotic PDI dual oxidoreductase activity. Antioxid. Redox Signal. 35, 21-39.


Assuntos
Proteínas de Bactérias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Salmonella enterica/patogenicidade , Proteínas de Bactérias/ultraestrutura , Óperon/genética , Oxirredução , Estresse Oxidativo/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/ultraestrutura , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Dobramento de Proteína , Estrutura Terciária de Proteína , Salmonella enterica/enzimologia , Salmonella enterica/genética , Salmonella enterica/metabolismo , Tiorredoxinas/metabolismo
8.
Mol Immunol ; 126: 8-13, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717572

RESUMO

The serpin, C1-inhibitor (also known as SERPING1), plays a vital anti-inflammatory role in the body by controlling pro-inflammatory pathways such as complement and coagulation. The inhibitor's action is enhanced in the presence of polyanionic cofactors, such as heparin and polyphosphate, by increasing the rate of association with key enzymes such as C1s of the classical pathway of complement. The cofactor binding site of the serpin has never been mapped. Here we show that residues Lys284, Lys285 and Arg287 of C1-inhibitor play key roles in binding heparin and delivering the rate enhancement seen in the presence of polyanions and thus most likely represent the key cofactor binding residues for the serpin. We also show that simultaneous binding of the anion binding site of C1s by the polyanion is required to deliver the rate enhancement. Finally, we have shown that it is unlikely that the two positively charged zones of C1-inhibitor and C1s interact in the encounter complex between molecules as ablation of the charged zones did not in itself deliver a rate enhancement as might have been expected if the zones interacted. These insights provide crucial information as to the mechanism of action of this key serpin in the presence and absence of cofactor molecules.


Assuntos
Proteína Inibidora do Complemento C1/metabolismo , Complemento C1s/antagonistas & inibidores , Polímeros/metabolismo , Sítios de Ligação/genética , Proteína Inibidora do Complemento C1/genética , Proteína Inibidora do Complemento C1/isolamento & purificação , Complemento C1s/metabolismo , Heparina/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Polieletrólitos , Polifosfatos/metabolismo , Ligação Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
9.
Structure ; 26(7): 948-959.e5, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29804823

RESUMO

Protein dynamics manifested through structural flexibility play a central role in the function of biological molecules. Here we explore the substrate-mediated change in protein flexibility of an antibiotic target enzyme, Clostridium botulinum dihydrodipicolinate synthase. We demonstrate that the substrate, pyruvate, stabilizes the more active dimer-of-dimers or tetrameric form. Surprisingly, there is little difference between the crystal structures of apo and substrate-bound enzyme, suggesting protein dynamics may be important. Neutron and small-angle X-ray scattering experiments were used to probe substrate-induced dynamics on the sub-second timescale, but no significant changes were observed. We therefore developed a simple technique, coined protein dynamics-mass spectrometry (ProD-MS), which enables measurement of time-dependent alkylation of cysteine residues. ProD-MS together with X-ray crystallography and analytical ultracentrifugation analyses indicates that pyruvate locks the conformation of the dimer that promotes docking to the more active tetrameric form, offering insight into ligand-mediated stabilization of multimeric enzymes.


Assuntos
Clostridium botulinum/enzimologia , Hidroliases/química , Hidroliases/metabolismo , Ácido Pirúvico/metabolismo , Alquilação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clostridium botulinum/química , Cristalografia por Raios X , Cisteína/química , Estabilidade Enzimática , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
J Immunol ; 199(11): 3883-3891, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061764

RESUMO

Complement is crucial to the immune response, but dysregulation of the system causes inflammatory disease. Complement is activated by three pathways: classical, lectin, and alternative. The classical and lectin pathways are initiated by the C1r/C1s (classical) and MASP-1/MASP-2 (lectin) proteases. Given the role of complement in disease, there is a requirement for inhibitors to control the initiating proteases. In this article, we show that a novel inhibitor, gigastasin, from the giant Amazon leech, potently inhibits C1s and MASP-2, whereas it is also a good inhibitor of MASP-1. Gigastasin is a poor inhibitor of C1r. The inhibitor blocks the active sites of C1s and MASP-2, as well as the anion-binding exosites of the enzymes via sulfotyrosine residues. Complement deposition assays revealed that gigastasin is an effective inhibitor of complement activation in vivo, especially for activation via the lectin pathway. These data suggest that the cumulative effects of inhibiting both MASP-2 and MASP-1 have a greater effect on the lectin pathway than the more potent inhibition of only C1s of the classical pathway.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Complemento C1/antagonistas & inibidores , Inativadores do Complemento/química , Via Clássica do Complemento/efeitos dos fármacos , Lectina de Ligação a Manose da Via do Complemento/efeitos dos fármacos , Sanguessugas/química , Serina Proteases Associadas a Proteína de Ligação a Manose/antagonistas & inibidores , Peptídeos/química , Inibidores de Serino Proteinase/química , Animais , Domínio Catalítico/efeitos dos fármacos , Células Cultivadas , Inativadores do Complemento/farmacologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Peptídeos/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Inibidores de Serino Proteinase/farmacologia
11.
Blood ; 128(13): 1766-76, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27338096

RESUMO

The complement system plays a key role in innate immunity, inflammation, and coagulation. The system is delicately balanced by negative regulatory mechanisms that modulate the host response to pathogen invasion and injury. The serpin, C1-esterase inhibitor (C1-INH), is the only known plasma inhibitor of C1s, the initiating serine protease of the classical pathway of complement. Like other serpin-protease partners, C1-INH interaction with C1s is accelerated by polyanions such as heparin. Polyphosphate (polyP) is a naturally occurring polyanion with effects on coagulation and complement. We recently found that polyP binds to C1-INH, prompting us to consider whether polyP acts as a cofactor for C1-INH interactions with its target proteases. We show that polyP dampens C1s-mediated activation of the classical pathway in a polymer length- and concentration-dependent manner by accelerating C1-INH neutralization of C1s cleavage of C4 and C2. PolyP significantly increases the rate of interaction between C1s and C1-INH, to an extent comparable to heparin, with an exosite on the serine protease domain of the enzyme playing a major role in this interaction. In a serum-based cell culture system, polyP significantly suppressed C4d deposition on endothelial cells, generated via the classical and lectin pathways. Moreover, polyP and C1-INH colocalize in activated platelets, suggesting that their interactions are physiologically relevant. In summary, like heparin, polyP is a naturally occurring cofactor for the C1s:C1-INH interaction and thus an important regulator of complement activation. The findings may provide novel insights into mechanisms underlying inflammatory diseases and the development of new therapies.


Assuntos
Proteínas Inativadoras do Complemento 1/metabolismo , Proteínas do Sistema Complemento/metabolismo , Polifosfatos/metabolismo , Sítios de Ligação , Plaquetas/imunologia , Plaquetas/metabolismo , Células Cultivadas , Proteína Inibidora do Complemento C1 , Complemento C1s/química , Complemento C1s/metabolismo , Complemento C2/metabolismo , Complemento C4/metabolismo , Via Clássica do Complemento , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Heparina/metabolismo , Humanos , Técnicas In Vitro , Polifosfatos/química
12.
Proteins ; 82(9): 1869-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24677246

RESUMO

Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.


Assuntos
Agrobacterium tumefaciens/enzimologia , Domínio Catalítico , Hidroliases/ultraestrutura , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cristalografia por Raios X , Hidroliases/biossíntese , Hidroliases/genética , Tumores de Planta/microbiologia , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Biochimie ; 95(10): 1949-53, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23838343

RESUMO

DAP epimerase is the penultimate enzyme in the lysine biosynthesis pathway. The most versatile assay for DAP epimerase catalytic activity employs a coupled DAP epimerase-DAP dehydrogenase enzyme system with a commercial mixture of DAP isomers as substrate. DAP dehydrogenase converts meso-DAP to THDP with concomitant reduction of NADP(+) to NADPH. We show that at high concentrations, accumulation of NADPH results in inhibition of DAPDH, resulting in spurious kinetic data. A new assay has been developed employing DAP decarboxylase that allows the reliable characterisation of DAP epimerase enzyme kinetics.


Assuntos
Isomerases de Aminoácido/metabolismo , Corynebacterium glutamicum/enzimologia , Ensaios Enzimáticos/normas , Escherichia coli/enzimologia , Isomerases de Aminoácido/química , Isomerases de Aminoácido/genética , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/química , Carboxiliases/genética , Carboxiliases/metabolismo , Corynebacterium glutamicum/genética , Ácido Diaminopimélico/metabolismo , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Lisina/biossíntese , NADP/química , NADP/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes
14.
J Biol Chem ; 288(13): 9238-48, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23426375

RESUMO

Diaminopimelate (DAP) epimerase is involved in the biosynthesis of meso-DAP and lysine, which are important precursors for the synthesis of peptidoglycan, housekeeping proteins, and virulence factors in bacteria. Accordingly, DAP epimerase is a promising antimicrobial target. Previous studies report that DAP epimerase exists as a monomeric enzyme. However, we show using analytical ultracentrifugation, X-ray crystallography, and enzyme kinetic analyses that DAP epimerase from Escherichia coli exists as a functional dimer in solution and the crystal state. Furthermore, the 2.0-Å X-ray crystal structure of the E. coli DAP epimerase dimer shows for the first time that the enzyme exists in an open, active conformation. The importance of dimerization was subsequently probed by using site-directed mutagenesis to generate a monomeric mutant (Y268A). Our studies show that Y268A is catalytically inactive, thus demonstrating that dimerization of DAP epimerase is essential for catalysis. Molecular dynamics simulations indicate that the DAP epimerase monomer is inherently more flexible than the dimer, suggesting that dimerization optimizes protein dynamics to support function. Our findings offer insight into the development of novel antimicrobial agents targeting the dimeric antibiotic target DAP epimerase.


Assuntos
Isomerases de Aminoácido/química , Escherichia coli/enzimologia , Antibacterianos/química , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X/métodos , Dimerização , Escherichia coli/metabolismo , Lisina/química , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Mutação Puntual , Conformação Proteica , Estrutura Secundária de Proteína
15.
Bioorg Med Chem ; 20(7): 2419-26, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22386717

RESUMO

Dihydrodipicolinate synthase is a key enzyme in the lysine biosynthesis pathway that catalyzes the condensation of pyruvate and aspartate semi-aldehyde. A series of phenolic ketoacid derivatives that mimic the proposed enzymatic intermediate were designed as potential inhibitors of this enzyme and were synthesized from simple precursors. The ketoacid derivatives were shown to act as slow and slow-tight binding inhibitors. Mass spectrometric experiments provided further evidence to support the proposed model of inhibition, demonstrating either an encounter complex or a condensation product for the slow and slow-tight binding inhibitors, respectively.


Assuntos
Inibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Hidroliases/antagonistas & inibidores , Cetoácidos/química , Inibidores Enzimáticos/síntese química , Proteínas de Escherichia coli/metabolismo , Hidroliases/metabolismo , Cetoácidos/síntese química , Cinética , Espectrometria de Massas
16.
Arch Biochem Biophys ; 512(2): 167-74, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21704017

RESUMO

Given the rapid rise in antibiotic resistance, including methicillin resistance in Staphylococcus aureus (MRSA), there is an urgent need to characterize novel drug targets. Enzymes of the lysine biosynthesis pathway in bacteria are examples of such targets, including dihydrodipicolinate reductase (DHDPR, E.C. 1.3.1.26), which is the product of an essential bacterial gene. DHDPR catalyzes the NAD(P)H-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) in the lysine biosynthesis pathway. We show that MRSA-DHDPR exhibits a unique nucleotide specificity utilizing NADPH (K(m)=12µM) as a cofactor more effectively than NADH (K(m)=26µM). However, the enzyme is inhibited by high concentrations of DHDP when using NADPH as a cofactor, but not with NADH. Isothermal titration calorimetry (ITC) studies reveal that MRSA-DHDPR has ∼20-fold greater binding affinity for NADPH (K(d)=1.5µM) relative to NADH (K(d)=29µM). Kinetic investigations in tandem with ITC studies show that the enzyme follows a compulsory-order ternary complex mechanism; with inhibition by DHDP through the formation of a nonproductive ternary complex with NADP(+). This work describes, for the first time, the catalytic mechanism and cofactor preference of MRSA-DHDPR, and provides insight into rational approaches to inhibiting this valid antimicrobial target.


Assuntos
Di-Hidrodipicolinato Redutase/metabolismo , Staphylococcus aureus Resistente à Meticilina/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calorimetria , Catálise , Di-Hidrodipicolinato Redutase/antagonistas & inibidores , Di-Hidrodipicolinato Redutase/química , Di-Hidrodipicolinato Redutase/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Staphylococcus aureus Resistente à Meticilina/genética , Dados de Sequência Molecular , NAD/metabolismo , NADP/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
17.
Artigo em Inglês | MEDLINE | ID: mdl-20057066

RESUMO

Diaminopimelate (DAP) epimerase (EC 5.1.1.7) catalyzes the penultimate step of lysine biosynthesis in bacteria and plants, converting L,L-diaminopimelate to meso-diaminopimelate. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DAP epimerase from Escherichia coli are presented. Crystals were obtained in space group P4(1)2(1)2 and diffracted to 2.0 A resolution, with unit-cell parameters a = b = 89.4, c = 179.6 A. Molecular replacement was conducted using Bacillus anthracis DAP epimerase as a search model and showed the presence of two molecules in the asymmetric unit, with an initial R(free) of 0.456 and R(work) of 0.416.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/isolamento & purificação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...